
DIMENSIONAMENTO BOILER ACCUMULO ACS

Temperatura dell'acqua fredda

Il suo valore dipende da molti fattori quali: la temperatura del terreno, la temperatura esterna, la zona di provenienza dell'acqua e la natura della rete di distribuzione. In pratica, tuttavia, si può ritenere:

- Italia settentrionale t = 10 ÷ 12°C
- Italia centrale t = 12 ÷ 15°C
- Italia meridionale t = 15 ÷ 18°C

Temperatura di accumulo dell'acqua calda

Il suo valore deve essere scelto in funzione dei seguenti criteri:

- evitare (o almeno limitare) fenomeni di corrosione e deposito del calcare. Tali fenomeni sono molto più rapidi e aggressivi quando l'acqua di accumulo supera i 60-65°C;
- limitare le dimensioni dei bollitori. Basse temperature dell'acqua di accumulo fanno aumentare notevolmente il volume dei bollitori;
- evitare lo sviluppo nell'acqua dei batteri. In genere i batteri possono sopportare a lungo temperature fino a 50°C. Muoiono invece in tempi rapidi oltre i 55°C.

In considerazione di questi aspetti, accumulare acqua calda a 60°C è in genere un buon compromesso, compatibile anche con i limiti imposti dalla attuale norma UNI 9182.

Temperatura dell'acqua scaldante

E' bene non tenere troppo elevata la temperatura del fluido scaldante e limitare il salto termico. Ad esempio si può adottare una temperatura di mandata pari a 75°C e un salto termico di 5°C.

FORMULE

Per calcolare la superficie del serpentino K = Coefficiente di scambio termico del riscaldante si può utilizzare con buona approssimazione la seguente formula:

$$S = \frac{Qh}{K \cdot (tms - tm)}$$
 (5)

dove:

= Superficie del serpentino. S

Qh = Calore orario trasmissibile dal serpentino (cioè calore orario richiesto alla caldaia).

serpentino.

Normalmente si può considerare:

K = 500 per tubi in ferro

K = 520 per tubi in rame

tms = Temperatura media del fluido scaldante: è data dalla media fra la temperatura di mandata e di ritorno del fluido scaldante.

tm = Temperatura media del fluido riscaldato: è data dalla media fra la temperatura dell'acqua di accumulo (ta) e la temperatura dell'acqua fredda (tf) di alimentazione.

EX.

Determinare il bollitore richiesto in un impianto che produce acqua calda per 50 alloggi con fabbisogno nel periodo di punta di 12750 litri di ACS

Si consideri:

- temperatura di accumulo = 60°C, temperatura acqua fredda = 10°C,
- temperatura andata fluido scaldante = 75°C, temperatura ritorno fluido scaldante = 70°C.
- serpentino in acciaio con U=581 W/m2k

Calcolo del calore totale necessario per riscaldare l'acqua richiesta nel periodo di punta

Tacs utilizzo = 40°C e TH20=10°C

Qt = m Ct Δ T = 1601145 kJ = 444,76 kWh

Potenza (Qh) che deve essere ceduto all'acqua in base al calore totale richiesto e al tempo in cui esso può essere ceduto: cioè in base al tempo dato dalla somma fra il periodo di preriscaldamento (tpr) e il periodo di punta (tpu). tpr=2h e tpu=1.5h

Ph= Qt / (tpr+tpu) = 127,075 kW

Portata fluido scaldante:

Ph= m cT DTsc \rightarrow m = Ph / Ct DTsc = 6,07 Kg/s

Calcolo del calore da accumulare nella fase di preriscaldamento del boiler:

Qa= Ph * tpr= 914940 kJ = 254,15 kWh

Determinazione del volume del bollitore

Ta=60°C e Tf=10°C

m= Qa / Ct (Ta- Tf) = 4371,4 Kg \rightarrow V=m=4371 litri

Calcolo della superficie del serpentino del boiler

temperature medie del fluido scaldante (tms) e del fluido riscaldato (tm):

tms= (75+70) / 2 = 72,5°C tm= (60+10)/2 = 35°C $\rightarrow \Delta$ tm= tms - tm U=581 W/m2k A= Ph / (U Δ tm)= 5,9 m2